3/4, czyli potęga Życia – odc. 2


Empowerment Coaching Krakow Blog-Potega Zycia 2

Ponieważ powierzchnia skóry, przez którą można pozbyć się ciepła, rośnie jak rozmiar w potędze drugiej, a ilość produkowanej energii jest proporcjonalna do objętości, więc rozmiaru w potędze trzeciej, to należałoby się raczej spodziewać, że słoń i każde inne zwierzę – żeby się nie ugotować i nie wychłodzić – powinny utrzymywać matabolizm proporcjonalny do masy w potędze dwie trzecie.


O pomyłce jednak mowy być nie może: to właśnie trzy czwarte z uporem pojawia się w kolejnych zauważanych przez uczonych prawach przyrody. We wszystkich ekosystemach leśnych, od Amazonki po tundrę, zależność pomiędzy gęstością występowania danego gatunku drzew jest odwrotnie proporcjonalna do masy drzewa w potędze trzy czwarte. Tempo wzrostu roślin też zależy od masy w potędze trzy czwarte. Ta sama zależność wiąże grubość pnia drzewa z masą rośliny. Terytorium, jakie jest potrzebne zwierzęciu do przeżycia też wzrasta z jego masą. W jakim stosunku? Oczywiście w potędze trzy czwarte.


Dlaczego biologia żywi takie upodobanie do trzech czwartych? Zdaniem amerykańskich ekologów Jamesa Browna i Briana Enquitsta oraz współpracującego z nimi fizyka cząstek elementarnych z Los Alamos Geoffreya Westa kluczem do wyjaśnienia tajemnicy jest obserwacja, że rozmiar organizmu zależy od wydajności systemu wewnętrznego transportu – zaopatrzenia w wodę, tlen i składniki pokarmowe. Dlatego karaluchy nie mogą zbyt urosnąć, bo nie pozwalają im na to ograniczenia układu oddechowego.


Wydajność wewnętrznego systemu zaopatrzenia wydaje się też wyjaśniać zagadkę, dlaczego wieloryby rosną takie duże. Rzeczywiście, ssaki morskie osiągają imponujące rozmiary, a ryby nie dorównują im wielkością. Co jest przyczyną tych dysproporcji?


Po pierwsze ssakom jest łatwiej oddychać niż rybom, bo o ile w litrze wody morskiej przy temperaturze 10 stopni C jest tylko 3,07 mililitrów tlenu,  o tyle w tej samej objętości powietrza jest go 50 razy więcej.


Obie grupy zwierząt inaczej też rozwiązały architekturę układu krwionośnego. Ryby postawiły na prostotę: mają jeden uniwerslany krwiobieg. Ssaki są wyposażone w dwa obiegi: płucny, w którym panuje niskie ciśnienie, by nie uszkodzić koronki naczyń otaczającej pęcherzyki wymiany gazowej, i drugi – tłoczący krew we wszystkie zakamarki ciała. W tym drugim panuje o wiele wyższe ciśnienie pozwalające przepchnąc krew na krańce organizmu.


Życie jest fraktalem

Konary drzew, plątaninę żył i tętnic, siateczkę nerwów i rozgałęzienia układu oddechowego łączy zdumiewające podobieństwo. Nawet więcej niż podobieństwo – wszystkie te struktury odznaczają się własnością, którą matematycy określają mianem samopodobieństwa. Co to znaczy?


Różyczka kalafiora w powiększeniu wygląda jak cała roślina, odgałęzienie pierzastego liścia paproci – jak cały liść. Figury, których część ma strukturę identyczną z całością, które powiększone albo pomniejszone wydają się nie zmieniać, matematycy nazywają fraktalami. Świat pełen jest takich tworów. Geometria odkryła je stosunkowo późno, wcześniej ograniczała się do badania klasycznych figur – kół, trójkątów, czy elipsoid obrotowych. Jak trudno złożyć z nich prawdziwe obrazy, można się przekonać oglądając obrazy kubistów.


Figury tradycyjnej geometrii nie są samopodobne: mocno zmniejszone koło wygląda jak punkt, natomiast powiększone – do złudzenia przypomina linię prostą. W prawdziwym świecie obiekty podczas powiększania nie upraszczają się, lecz – jak fraktale – ukazują kolejne poziomy swojej złożonej struktury.


Tradycyjne figury mają zawsze całkowite wymiary. Mamy więc jednowymiarowe linie, dwuwymiarowe obiekty na powierzchniach (trójkaty, koła, wielokąty) i trójwymiarowe kule i wielościany. Fraktale uzupełniają tę kolekcję o wymiary wyrażone przez wszystkie możliwe ułamki określające ich stopień złożoności. Fraktale rysowane na kartce mają wymiary pomiędzy jeden i dwa, fraktale przestrzenne, jak różyczka kalafiora, mają wymiary pomiedzy dwa a trzy, na przykład białko hemoglobiny charakteryzuje się wymiarem 2,4.


Wszystko, co żyje – argumentuje trójka badaczy – od drzew, poprzez zwierzęta, na jednokomórkowych organizmach kończąc – odżywia się poprzez “drzewopodobną” strukturę. Sieć naczyń krwionośnych, oddechowych, ksylemy drzewa, a nawet mitochondria, czyli “elektrownie” komórek, mają podobny, fraktalny kształt. Jasne więc, że w ogólnym równaniu życia występować będzie nie dwie trzecie – stosunek wymiarów powierzchni do objętości, jakby to wynikało z tradycyjnej geometrii – ale pewien ułamek zależny od wymiaru fraktalnej sieci. Według wyliczeń tria West, Brown, Enquist  będzie nim właśnie trzy czwarte.


Teoria opublikowana w 1997 roku w “Science” i nazwana od nazwisk autorów Teorią WBE wywołała burzę w środowisku biologów. Niemal równocześnie z jej ukazaniem się na łamach “American Naturalist” pojawiła się praca polskich uczonych z Uniwersytetu Jagiellońskiego Jana Kozłowskiego i Januarego Webera prezentująca konkurencyjne podejście…


Kontynuacja w następnym odcinku.


Autorem artykułu jest Irena Cieślińska, a został on opublikowany w Przekroju Nauki nr 8/2008 Zobacz także:

3/4, czyli potęga Życia - odc. 1 Wyuczona bezradność - odc. 1 Gdzie są granice możliwości naszego mózgu? - odc. 1 Deus ex Machina – odc. 1 Boska Proporcja – mit czy odcisk Boskiego Matematyka? Co wspólnego z rozwojem osobistym ma teoria Einsteina? Buddyzm i fizyka kwantowa, a wypalenie zawodowe (?!)

10 wyświetleń